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ABSTRACT 

This  report  defines  the  fundamental  parameters  af- 
fecting  the  capacity of a  soft-decision  optical  channel, 
and  relates  them  to  corresponding  parameters  for  the 
well-understood A W G N  channel.  For  example,  just  as 
the  performance  on  a  standard  additive  white  Gaus- 
sian  noise  (AWGN)  channel  is  fully  characterized b y  
i t s   SNR,  a  corresponding  Webb  channel  is  fully  char- 
acterized b y  i ts  SNR, and  a  single  additional  skewness 
parameter S2 which  depends  on  the  photon  detector. In 
fact,  this  Webb  channel  reduces  to  the  standard  AWGN 
channel  when S2 -+ m. 

Numerical  results  show  that  the  capacity of M - a r y  
orthogonal  signaling on  the  Webb  channel  exhibits  the 
same  brick-wall  Shannon  limit ( M  In 2)/(M - 1) as  on 
the  AWGN  channel  (z -1.59 d B   f o r  large M ) ,  and  that 
soft  output  channels  offer  a 3 d B  advantage  over hard 
output  channels. 

I. INTRODUCTION 

In  an  optical communication  system using M-ary 
pulse position  modulation (PPM),  the probability  den- 
sity  function  describing the number q of photons at  the 
output of an avalanche photodiode  detector is accu- 
rately  approximated by [a] :  

where f i  is the mean  number of photons  absorbed by 
the  APD, G is the  APD  gain,  and F = k , f fG  + (2 - 
l / G ) ( 1  - k e f f )  is an excess noise factor. The Webb 
model for PPM signaling  (here called Webb-2) uses the 
density  in Eq. (1) twice: once using the average number 
fil of photons  in  the signal slot,  and a second time using 

This work  was funded by the TMOD Technology Program  and 
performed at the  Jet  Propulsion  Laboratory, California Institute 
of Technology under  contract  with  the  National  Aeronautics  and 
Space  Administration. 

the average number 60 of photons  in  the M - 1 non- 
signal  slots. 

The  Webb-distributed  electron  count q is  conve- 
niently  represented in  terms of a standardized (scaled- 
and-translated) Webb  random  variable w. Defining 
q = m + wu, where m = Gfi and u = m, the 
probability  density for the  standardized Webb random 
variable w simplifies to 

P(w;  62) = "(1 + ,/S)-3/2,-W2/2(l+W/R) , w > -6 1 

f i  
(2) 

where d2 = f iF / (F  - 1)2. Note that  this  standard- 
ized Webb  probability  reduces  exactly  to a standardized 
Gaussian when the  parameter S2 -+ 00. 

If w is a standardized Webb random  variable  with 
skewness parameter S2 and  probability  density given 
by Eq. (2), then q = m + wu is a Webb random vari- 
able  with  mean m, variance u2, and skewness S2, and is 
denoted  as W(m,  u2, S2). The standardized Webb ran- 
dom  variable  has zero mean,  unit variance and can be 
denoted w = W(0,  1,S2). 

Our  objective  in this  paper is to develop an under- 
standing of the role of various optical  parameters  on 
the capacity of an optical  communication  system, and 
to  this  end we compute  and compare the capacities of 
various idealized channels which might be used to ap- 
proximate  the  optical communication  channel. We also 
compare the capacities achievable with soft- and  hard- 
decision channel outputs. 

11. CAPACITY  OF  PPM  ON  CHANNELS 
WITH  SOFT  OUTPUTS 

For each channel  model we consider the com- 
munication  system shown in Fig. 1. The  output 
U = ( U l ,  U2, . . . , U h )  of a k-bit  source is modulated 
with ( M  = 2h)-ary  PPM  to yield a signal X = 
( X I ,  X,, . . . , X M ) .  The capacity of M-PPM is the same 
as  that of an  orthogonal  signal  set  with M codewords, 
and of M-FSK. 

The capacity of PPM modulation  on  the  channel is 
the maximum  amount of information  that can be  trans- 
mitted reliably and is given by C = max,(x) I(Y; X).  
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Fig. 1. Model of PPM signaling. 

The channel  capacity with  input signals  restricted  to an 
M-ary orthogonal  constellation C, and no restriction  on 
the channel output, is given by 

where y = (yl,  . . . , y ~ )  is the received vector. Because 
of the  symmetry of orthogonal  signals  and of the chan- 
nels considered,  capacity is achieved with an equiprob- 
able M-ary source distribution,  and  Eq. ( 3 )  reduces to 

where v is a random vector obtained  from y via an 
arbitrary invertible  transformation.  Uninspired com- 
putation of the  expectation of the right  side of Eq. (4) 
requires  evaluation of an M-dimensional  integral. Al- 
ternatively,  this "dimensional expectation  can  be ac- 
curately  estimated  via  Monte  Carlo  simulation, at much 
lower complexity. 

A. Capacity of M-ary PPM on the  Standard  A WGN 
Channel (AWGN-1) 

In  this case, the possible signals X are of the form 
xj = (xj1,. . . , z j ~ )  = ( O , O , O , .  . . ,m,O,. . . ,0) where 
the nonzero signal value m is in  position j .  The  trans- 
mitted vector x is corrupted by additive  white  Gaussian 
noise with zero mean and variance a2 in each compo- 
nent: 

{ y j  is N ( m ,  a2) (signal  present) 
yi is N(0 ,  a2), i # j (signal absent) (5) 

This is the model for any  set of M-ary orthogonal sig- 
nals,  with energy per "dimensional symbol E, = m2, 
transmitted on an AWGN channel with two-sided noise 
spectral density No/2 = a2. A  symbol signal-to-noise 
ratio  (SNR)  can  be defined by p = m2/a2 = 2E,/No. 

For the  distributions in  Eq. (5), we have 

where +(x)  = 1 e P x 2 j 2 .  Defining vj = yj /a ,  we ob- 
tain 
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Using Eq. (7) in Eq. (4) we get an expression for the 
capacity of orthogonal  signaling  on  the AWGN-1 chan- 
nel 

B. Capacity of M-ary PPM on a More  General  Gaus- 
sian  Channel (A WGN-2) 

Now  we extend  the analysis to cover a "double Gaus- 
sian" problem  (here called AWGN-2), related more di- 
rectly to  the  PPM optical  model  and  characterized by 
different means and variances  depending  on  whether 
the signal is present  or  absent: 

c yi is N(m0, a;), i # j (signal  absent) 
Y j  is N(m1, Of )  (signal  present), (9) 

where ml > m0 and of > ai.  By symmetry of the 
orthogonal PPM signal  constellation,  capacity  can  be 
evaluated by Eq. (4). By straightforward  algebra,  it 
follows that 

where vj = (yj  -mo)/ao and uj = (yj  -ml)/al. Define 
Y = ai/af and p = (ml - m ~ ) ~ / a i .  Then, given x l ,  
the { v j }  are  independent  and  distributed  as 

In  terms of the {v j } ,  the {u j}  are  determined by the 
invertible  transformation u~lj = a ( v j  - f i ) .  Thus, we 
have uj f vj = vj ( a h  1) - 0. Plugging into  Eq. (4), 
we obtain 

Note that  this  equation reduces to  the  standard 
AWGN-1 capacity for orthogonal  signals  (Eq. (8)), 
when y "+ 1. 
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C. Capacity of M-ary PPM on  Webb-distributed  Chan- 
nels (Webb-1 and Webb-2) 

The Webb-1 channel model simply substitutes Webb 
random variables W(.,.,.) for the  Gaussian  random vari- 
ables N(.,.) in  Eq. (5) for the AWGN-1 channel model: 

y j  is W(m,a2,S2) (signal  present) 
yi is W(0,  02, S 2 ) ,  i # j (signal  absent) (13) { 

The conditional  probability  density  functions are 

where p( . ;  e )  is given in  Eq. (2).  Thus, for the Webb-1 
model, 

where, as in the AWGN-1 channel, v j  = y j / o  and p = 
m2/a2. The capacity of the Webb-1  channel is given by 
plugging into  Eq. (4): 

The Webb-2 channel model substitutes Webb ran- 
dom  variables W(.,-,.) for the  Gaussian  random vari- 
ables N(.,.) in  Eq.  (9) for the AWGN-2 channel model: 

yi is W(m0, a,”, Si) ,  i # j (signal absent) (16) { Y j  is W h ,  of, 62, (signal  present) 

Following the same  method  as  in  Eq.  (14), we have 

where, as  in the AWGN-2 channel, v j  = (y j  - mo)/ao, 
y = .,”/of and p = (ml - mo)’/a,”. The  APD channel 
imposes an additional  constraint  that oi/af = S,”/Sf. 
Using this  constraint  and defining A = Sf - Si,  the 
capacity of the Webb-2 channel is given by plugging 
into Eq. (4): 
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111. CAPACITY AS A FUNCTION OF 
BIT-SNR 

In  the case of the classic AWGN-1 channel, the ca- 
pacity  formulas  imply a well-known threshold on  the 
minimum  required  signal-to-noise ratio  (SNR) per in- 
formation bit communicated over the channel. If the 
AWGN-1 channel-SNR is E,/No (per channel  symbol), 
the corresponding bit-SNR is computed  as &/No = 
(E , /No) /R  (per  information bit), where R  (information 
bits/channel  symbol)  is  the  rate of the overall code ap- 
plied to  the channel. If the  rate is at  the capacity  limit, 
then R = C ,  and  the formula for the minimum possible 
bit-SNR is (&/NO)min = (E,/No)/C. 

To unify the  treatment of each channel, we define a 
minimum  bit-SNR parameter p b  = p/(2C). Note that 
this definition for the AWGN-1 channel reduces to Pb = 
(Es/NO)/c = (Eb/NO)min. 

A. The AWGN-1 Channel 

Fig.  2 shows the AWGN-1 capacity  as a function 
of the minimum  required  bit-SNR Pb = Eb/NO. It 
also shows the &/NO required for uncoded M-PPM 
to achieve bit  error  probability Pb = where 
Pb = ~ & P & I ,  and  the probability of uncoded sym- 
bol  error is 

cc 
P&I = 1 - s_, 4 (z - 2 / 7 5 )  @(z)”ldz (19) 

where @ ( x )  = sf“, 4(u)du. Fig.  2  illustrates  the pos- 
sible improvements to  be gained by using coding on 
M-PPM.  This figure also shows, for each Ad, the capac- 
ity  limitation  imposed by restricting  the “dimensional 
signaling  set to  be  the orthogonal  set.  The  exact com- 
putation of C for larger  dimensions is extremely com- 
plex and  it is necessary to resort to Monte Carlo  meth- 
ods  as  described  in [5, Appendix  I]. 

For M-PPM on an AWGN-1 channel, both  the un- 
coded probability of symbol  error and  the capacity 
in Eq. (8) are  functions of the single parameter p = 
m2/a2. This is a statement of the well-known fact that 
the AWGN-1 channel  is fully characterized by its SNR. 

B. The AWGN-2 Channel 

The AWGN-2 channel  capacity  can be  obtained by 
Monte Carlo  simulation of Eq. (12). For brevity we omit 
a plot of it here. The probability of uncoded M-PPM 
symbol  error is given by 



Fig. 2. PPM  capacity on AWGN-1 channel,  determined 
from Eq. (8). 

Note that when y + 1 and mg -+ 0, the AWGN-2 
channel becomes the AWGN-1 channel, and Eq. (20) 
reduces to Eq. (19). 

For M-PPM on an AWGN-2 channel, both  the un- 
coded probability of symbol  error and  the capacity  in 
Eq. (12) are functions of the  parameters p = (ml - 
r n ~ ) ~ / a ;  and y = a;/aT. This is a statement  that  the 
AWGN-2 channel is fully characterized by its SNR and 
the  ratio of the variances. 

C. The Webb  Channels 

We evaluated the  M-dimensional  expectations  in (8), 
(12), and (18)  accurately via Monte  Carlo  simulation. 
Some results  are  plotted  in  Fig.  3 for the AWGN-1 and 
Webb-2 channels for different PPM orders M .  Along 
each Webb-2 curve, the two independent variables held 
constant  are A = 60.8 and py/(1 - y) = 17.6, which 
correspond to a representative  optical APD problem 
with qn, = 38 detected  signal  photons  per PPM word 
and  an excess  noise factor F = 2.16. The  results show 
that  the capacity of M-ary  orthogonal signaling on 
the Webb channel  exhibits  the  same brick-wall Shan- 
non limit ( M  In 2) / ( M  - 1) as  on the AWGN channel 
(M -1.59 dB for large M ) .  (When  translated from an 
M-ary orthogonal to  an  M-ary simplex  signal set, each 
curve would have a brick wall at -1.159 dB.) A  compar- 
ison of hard-  and  soft-output Webb-2 channels is shown 
in Fig 4, where a 3dB  gain is seen for the soft channel. 

Webb-2 Dararneters: 
A = 60.8 
py/(l-y) = 17.6 

+3.01 dB 
+I  2 5  dB Bit-SNR pb, dB 

-1 5 9  dB 

Fig. 3. Capacity of AWGN-1 and Webb-2  channels for dif- 
ferent PPM sizes. 
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Fig. 4. Capacity of 256-PPM  on the hard-  and  soft-output 
Webb-2  channels. 

IV. COMPARISON OF CAPACITY 
RESULTS WITH  ACTUAL  CODE 

PERFORMANCE 

Fig. 5 shows the performance of Reed-Solomon (RS) 
codes on  GF(2k) applied to  2k-PPM for Pb = lop6. For 
each curve the  alphabet size is fixed and therefore the 
Reed-Solomon codeword size is fixed at (ak - 1) k-bit 
symbols. The curves are  obtained by varying the code 
rate  within each RS code family. For these curves, the 
RS decoder is assumed  to correct only errors  (i.e., no 
erasures),  and  the uncoded  symbol  error  probability is 
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Fig. 5 .  RS code  performance  compared to PPM capacity. 

given  by Eq. (19) with M = 2k. As an example, the 
performance of the (255,223) RS  code, with code rate 
approximately 7/8, is plotted at  approximately 7 bits 
per  channel use on  the 8-bit  RS  curve  in Fig. 5. This 
code requires 2.6 dB for Pb = lop6, and is only 1.8 dB 
worse than  the capacity  limit achievable by arbitrary 
codes of the same rate for 256-PPM (see gap marked 
with “B” in  Fig. 5). The  additional  gap, marked  as 
“A”, is due  to  constraining  the 256-dimensional signal 
set to  be orthogonal.  Note that  the comparison between 
the performance of RS codes and  the two capacity lim- 
its does not  account for the fact that  the RS decoder 
uses hard quantized inputs while both capacity  limits 
are  computed for unconstrained  channel  output.  This 
limitation  must  account for some portion of the non- 
optimality of RS codes. Another  interesting observa- 
tion  from Fig. 5 is that RS codes appear  to  be  optimum 
approximately at  rate  3/4 for all alphabet sizes. Lower- 
rate RS codes have progressively worse performance. 

Some results  are available on  simple  binary turbo 
codes of rate 1 /2  and  1/3 compared to RS codes of the 
same  rate.’ (See also [4].) These  results  indicate that, 
while these  binary  turbo codes do  outperform  RS codes 
of the same rate,  there  still  remains a gap of several dB 
to  the capacity  limit. 

‘“Data Compression and  Channel  Coding”, X2000 Report, 
JPL,  Sept. 15, 1997. 

V. CONCLUSIONS 

This  paper  has analyzed  channel models that can be 
used to approximate an APD-detected  optical commu- 
nication  channel. We  were able to define a suitable 
bit-normalized  SNR parameter Pb such that all of these 
channels with soft outputs yield brick-wall thresholds 
on  the minimum  acceptable value of Pb above which reli- 
able  communication is theoretically possible and below 
which it is not possible. Furthermore,  under  all of these 
models with soft channel  outputs,  the bit-SNR  thresh- 
olds for different values of M differ from each other by 
the “simplex-to-orthogonal  penalty” 9. Under both 
the AWGN-2 and Webb-2 models, the  gap between the 
capacities of hard-  and  soft-output  channels is about 
3 dB  at  the code rate giving the  optimum  hard-output 
bit-SNR. On  the  hard-output channels, there is an op- 
timum M beyond which capacity is diminished  because 
much of the  small  incremental  information available 
from  each  slot is destroyed  when  all of that informa- 
tion  must be  summarized  as a single decision among an 
increasing  number of candidate slots. This  contrasts 
sharply  with  the  results for soft decisions, for which 
larger M gives uniformly better capacity  under each 
model. 
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